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Abstract
Coconut palms are categorized into two forms, viz., ‘talls’ and ‘dwarfs’ which are being utilized to produce hybrids through the
process of inter-varietal or intra-varietal crosses. Hybrid coconut seedlings are generally identified and selected based on
morphological traits by plant breeders, which is quite difficult and requires expertise. Even minor errors in identification may
adversely affect breeding programs in coconut, which is spread over many decades. In this study, we have utilized thirty EST-SSR
markers, derived from existing coconut leaf transcriptome data, for screening polymorphism between eighteen coconut parental
lines. The polymorphic primers capable of differentiating the parental palms were then utilized successfully for assessment of
purity of hybrids derived from these parents. Thus, the current study demonstrates the utility of EST-SSR markers in determining
the genetic purity of hybrids in coconut.
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Introduction
Generating and testing hybrid varieties of

coconut are currently a major field of research in
many countries with the objectives of increasing
yield of nuts, oil content and also tolerance to abiotic
and biotic stresses. There are many hybrids being
developed and researched upon to cater to the
climate, soil conditions and needs of each individual
location. The two major varieties of coconut palms
are ‘talls’ and ‘dwarfs’ (Narayana and John, 1949)
with dwarfs (even though fewer than 5 per cent of
the world coconut population) being in higher
demand for genetic studies due to their quick
emission of inflorescence and early germination
(Bourdeix et al., 2008). Talls take a longer time to
flower (~6 years) but live much longer (~100 years)
when compared to dwarfs (~60 years). Talls (var.
typica) and dwarfs (var. nana) also differ in their
breeding behaviour with the talls being allogamous
(cross-fertilizing) and dwarfs being autogamous

(self-fertilizing) (Arunachalam and Rajesh, 2008).
Inter-varietal crosses between a dwarf male parent
with a tall female parent (T x D) as well as tall
male parent with a dwarf female parent (D x T) and
intra-varietal crosses (T x T and D x D) are
methodologies followed for the development of
hybrids (Arunachalam and Rajesh, 2008).

Hybrid varieties that provide better resistance
to various diseases and enhanced yield have been
successfully developed in coconut. Kalpa Sankara,
a hybrid resistant to root (wilt) disease has been
derived by crossing Chowghat Green Dwarf (CGD)
and West Coast Tall (WCT) (Nair et al., 1996).
Hybrids developed between Vanuatu Tall (VTT)
and Rennell Island Tall (RIT) have been reported
to possess better resistance towards coconut foliar
decay disease, which is endemic to Vanuatu in the
South Pacific (Labouisse et al., 2011). Recently,
Kalpa Samrudhi, a cross between Malayan Yellow
Dwarf (MYD) and WCT, has been developed which
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provides a much higher nut yield, copra content as
well as oil output when compared to its parents
(Jerard et al., 2015).

Even though the development of hybrids has
contributed significantly for the increased
productivity of coconut, the timely production and
ample supply of hybrid seedlings, which are
genetically pure, to the farmers is the key factor
determining the success of hybrid technology in this
crop. Morphological descriptors currently used for
seed purity assessment in coconut include petiole
colour, days taken for germination, seedling vigour
and higher collar girth (Rajesh et al., 2014).
Although hybrid purity assessments based on
morphology are extensively taken up, they are often
affected by environment; in addition, requirement
for time and resources for such an assessment is
tremendous. Selection by petiole colour, which is
generally utilized marker to select hybrid seedlings
in nurseries, is authentic only if parents used are
homozygous for red, yellow or green petiole (Rajesh
et al., 2014). Some of the drawbacks of utilizing
morphological traits for genetic purity testing of
coconut hybrids are that they are cumbersome and
subjected to environmental influences.
Furthermore, many of the varieties and hybrids are
phenotypically less distinct resulting in difficulty
in accurate morphological evaluation.

DNA-based markers, because of their rapidity
in estimation, ease of use and cost-effectiveness,
have become indispensable for use in variety
identification, diversity and linkage-mapping
studies. Among the common molecular markers,
SSR (simple sequence repeat) are generally
preferred due to their abundance, co-dominant
inheritance, presence over the whole genome,
higher reproducibility, multi-allelic nature, hyper-
polymorphism and high transferability across
species/genera (Varshney et al., 2005). SSRs have
been developed and utilized in coconut for genetic
diversity studies (Rivera et al., 1999; Perera et al.,
2000; Meerow et al., 2003; Rajesh et al., 2008 a,b).

The use of SSRs for the authentication/
differentiation of hybrids is a widely accepted
procedure in many crops (Antonova et al., 2006;
Sundaram et al., 2008; Naresh et al., 2009) and has
been previously used in coconut too. SSR-based
identification of Kalpa Sankara hybrids has been
reported by Rajesh et al. (2012). In a cross between

Sri Lanka Yellow Dwarf (SLYD) and Sri Lanka Tall
(SLT), progenies with yellow colour were removed
as selfed progenies based on visual observations
(since SLYD petioles are yellow in colour), but SSR
analysis later on proved that at least 11 per cent of
the discarded yellow seedlings were actually
hybrids (Perera, 2010).

Although genomic SSR markers have been
utilized for genetic purity studies in plants
traditionally, their high cost and time involved in
this process have restricted their utilization. The
number of SSR markers available in coconut is
limited. With the exponential accumulation of data
in EST databases, EST-derived SSRs (EST-SSRs)
are being utilized these days for various molecular
studies. EST-SSRs are also advantageous in that
these SSRs might be from gene sequences that are
functional, ESTs being located in the coding region
of a gene. EST-SSR markers have been utilized
earlier in genetic purity assessment of annual crops
like safflower (Naresh et al., 2009) and castor
(Pranavi et al., 2011; Gouri Shankar et al., 2013),
but there are no such reports in perennial tree crops.
In this study, we aim to identify novel markers that
could decisively validate different coconut hybrids
through the use of EST-SSRs.

Materials and methods

Plant materials
The plant materials used for hybrid

authentication using molecular markers consisted
of tall and dwarf parents and their offsprings
collected from the ICAR-CPCRI Farm, Kasaragod,
Kerala, India. A total of 18 parental lines and 103
progenies were used for the study (Table 1).

DNA isolation
DNA was extracted from spindle leaves of

parental palms and their progenies following the
modified method of Rajesh et al. (2013). To check
the DNA purity, it was run in 0.8 per cent agarose
gel, stained with ethidium bromide and visualized
in a gel documentation system.

Assessment of parental polymorphism using
EST-SSR markers

Initially, all the parental palms used in hybrid
seed production were screened using the 30 novel

Preethi et al.
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Table 1. Details of parental palms used for hybrid
authentication studies and EST-SSR primers
showing parental polymorphism

Cross Parents EST-SSR
no. primer showing

polymorphism

1 CGD Chowghat Green Dwarf CnKGDEST126
WCT West Coast Tall CnKGDEST117

2 MYD Malayan Yellow Dwarf CnKGDEST126
TPT Tiptur Tall

3 COD Chowghat Orange Dwarf CnKGDEST126
WCT West Coast Tall

4 GBGD Gangabondam Green Dwarf CnKGDEST130
PHOT Philippines Ordinary Tall

5 GBGD Ganga Bondam Green Dwarf CnKGDEST130
LCT Laccadive Ordinary Tall

6 LCT Laccadive Ordinary Tall CnKGDEST130
CCNT Cochin China Tall

7 GBGD Gangabondam Green Dwarf CnKGDEST130
FJT Fiji Tall

8 WCT West Coast Tall CnKGDEST126,
COD Chowghat Orange Dwarf CnKGDEST117

9 LCT Laccadive Ordinary Tall CnKGDEST117
COD Chowghat Orange Dwarf

10 COD Chowghat Orange Dwarf CnKGDEST117
CCNT Cochin China Tall

11 CGD Chowghat Green Dwarf CnKGDEST117
CCNT Cochin China Tall

12 MYD Malayan Yellow Dwarf CnKGDEST117
SNRT San Ramon Tall

13 MOD Malayan Orange Dwarf CnKGDEST117
SNRT San Ramon Tall

14 MGD Malayan Green Dwarf CnKGDEST117
CCNT Cochin China Tall

15 CRD Cameroon Red Dwarf CnKGDEST117
CCNT Cochin China Tall

16 COD Chowghat Orange Dwarf CnKGDEST117
SNRT San Ramon Tall

17 GBGD Gangabondam Green Dwarf CnKGDEST117
SNRT San Ramon Tall

18 MYD Malayan Yellow Dwarf CnKGDEST117
CCNT Cochin China Tall

EST-SSR primers (Table 2), which were mined from
leaf transcriptome data of Chowghat Green Dwarf
cultivar (Rajesh et al., 2015) as per the procedure
reported in Preethi et al. (2014). PCR reactions were
performed in volumes of  20 µL and contained genomic
DNA (35 ng), 10 mM of each dNTPs (MBI
Fermentas), 0.2 µM primer (Sigma), 3 Units of Taq
DNA polymerase (MBI Fermentas) and 10X buffer
[10 mM Tris-HCl (pH 8.3), 50 mM KCl, 1.5 mM
MgCl2]. The amplification conditions followed
were: initial denaturation step at 94 °C for
2 minutes, 39 cycles at 94 °C for 1 minute, 55 °C
for 1 minute and 72 °C for 1 minute 30 seconds and
concluding with a final extension at 72 °C for 10
minutes.

The amplicons were separated on 3 per cent
agarose gel and photographed on a digital gel
documentation and image analysis system after
staining with ethidium bromide. Polymorphic
primers capable of differentiating the parental palms
were then utilized for hybrid purity assessment
studies.

Results and discussion
Thirty novel EST-SSR primers were used to

screen polymorphism among eighteen parental
lines. Those primers capable of detecting
polymorphism among the parental palms in a
particular cross were selected (Table 1).
Confirmation of the results was achieved through
repeated testing. For all these markers, the alleles
present in the parents were of different sizes and
both parental alleles were detected in the hybrids,
EST-SSRs being co-dominant markers.

The hybridity of 14 F1 plants derived from
CGD x WCT were tested through the use of
CnKGDEST126 and CnKGDEST117 primers,
which displayed polymorphism between the
parental lines. Out of 14 F1 progenies, a total of 11
were confirmed to be true hybrids while three were
deduced to be selfed or off types using
CnKGDEST117 primers (Fig. A). Out of a total of
six F1 progenies tested from a cross between MYD
and TPT, two offsprings were deduced to be
offtypes and the other four as true hybrids using
the primer CnKGDEST126 (Fig. 1B). In a cross
between COD x WCT, two pure hybrids and two
selfed F1 progenies were detected using the primer
CnKGDEST126 (Fig. 1C). F1 progenies of the

Genetic purity testing of coconut hybrids
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crosses GBGD x PHOT (Fig. 1D), GBGD x LCOT
(Fig. 1E) and LCOT x CCNT (Fig. 1F) were all
confirmed to be true hybrids when checked with
primer CnKGDEST130. Two selfed F1 progenies
were detected out of a total of eight probable hybrids
in GBGD x FJT cross using the primer
CnKGDEST130 (Fig. 1G). The primer
CnKGDEST117 could aid in identifying one offtype
from among ten F1 progenies with the others confirmed
as true hybrids in WCT x COD (Fig. 1H). LCT x COD
cross revealed three offtypes and seven pure hybrids
using the primer CnKGDEST117 (Fig. 1I).

Progenies of crosses between COD x CCNT
(Fig. 2A), CRD x CCNT (Fig. 2B) and MYD x

CCNT (Fig. 2C) showed true hybrids in all the lanes
of the F1 progenies used for testing with the primer
CnKGDEST117. In CGD x CCNT (Fig. 2D) and
MYD x SNRT (Fig. 2E), out of four progenies, two
pure hybrids and two offtypes were identified using
the primer CnKGDEST117. The same primer,
CnKGDEST117, was used for the assessment of
hybrid purity in MOD x SNRT (Fig. 2F) and MGD
x CCNT (Fig. 2G) which showed that out of four
F1 progenies, only one was a true hybrid with the
others being offtypes. Assessment of progenies of
COD x SNRT with the primer CnKGDEST117
revealed that there was an offtype among the four
F1 progenies (Fig. 2H). In the cross between GBGD

Fig. 1. Gel profile of coconut parents and their hybrids
(M: 100bp ladder,  P1: Female parent, P2: Male parent, H: Hybrids,
O: Offtypes, A: CGD x WCT, B: MYD x TPT, C: COD x WCT, D:
GBGD x PHOT, E: GBGD x LCOT, F: LCOT x CCNT, G: GBGD x
FJT, H: WCT x COD, I: LCOT x COD)

Genetic purity testing of coconut hybrids
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and SNRT, when tested with the primer
CnKGDEST117, a total of three selfed progenies
were detected among the four F1 progenies tested
(Fig. 2I).

Identifying hybrids in an early stage is of prime
importance for breeders; using morphological
markers for this purpose is an unreliable method to
identify a hybrid mainly due to the fact that the
morphological traits are limited, display dominant
expression thus reducing statistical capability, are
influenced by the environment and they might

change according to the development phase of the
plant (Kumar et al. , 2009). Despite these
disadvantages, morphological traits like petiole
colour, days taken for germination, seedling vigour
in terms of leaf production and higher collar girth
over a specific duration are still utilized for
identification of hybrids in coconut (Rajesh et al.,
2014). With reference to a perennial crop like
coconut, it is also of utmost importance that proper
hybrid identification be done at an early stage due
to the long time that it takes to grow, flower and

Fig. 2. Gel profile of parents and hybrids
(M: 100bp ladder, P1: Female parent, P2: Male parent, H: Hybrids, O:
Offtypes, A: COD x CCNT, B: CRD x CCNT, C: MYD x CCNT, D: CGD x
CCNT, E: MYD x SNRT, F: MOD x SNRT, G: MGD x CCNT, H: COD x
SNRT, I: GBGD x SNRT)
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bear fruit. Commercial hybrids are hugely popular
in coconut with both public and private sectors
being actively invovled in the development of
hybrids. This necessitates strict quality control with
respect to monitoring seed genetic purity at various
production stages for the success of hybrid
technology among stakeholders.

Presently, EST-SSRs have emerged as an
important category of molecular markers due to
their ease of availability, their hyper variability
nature, their aptness for high throughput analysis,
their high rate of polymorphism and cross-
transferability in comparison to other available
markers (Poczai et al., 2013). EST-derived SSR
markers possess great potential for use in marker
assisted selection (MAS),  for developing  high
yielding varieties, molecular mapping and
quantitative trait loci (QTL) analysis (Varshney et al.,
2005). In coconut, they are few reports on
identification of EST-SSR markers in coconut (Xiao
et al., 2013; Xia et al., 2014). However, the present
study is the first report of hybrid authentication
studies in coconut utilizing EST-SSR markers.
Furthermore, the markers identified through this
study could be utilized in assessments of purity of
hybrid seedlings and identification and subsequent
elimination of selfed progenies from seedling
nurseries, resulting in considerable economy with
respect to time and resources.
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