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INTRODUCTION

Wheat, the second major staple food source after rice has 
a crucial role to play for ensuring global food security. It is 
one of the first tamed crops by human among the grains. In 
developing countries, wheat is the second source of calories 
and first sources of protein in the diets of consumers [1]. 
Around 37.2 million hectares area of southern Asia are under 
wheat cultivation producing 98.7 million tons of wheat [2]. At 
present, hexaploid bread wheat accounted for 95% of the wheat 
grown throughout the world, following tetraploid durum wheat 
of about remaining 5% [3]. Global climate change along with 
worldwide financial crisis and depletion of natural resourses 
cause serious threat to the living standard of millions of poor 
people. It is projected that wheat demand increased to 60 % 
by 2050 in the developing world [4]. At the same time, several 

biotic and abiotic stresses constraints the widespread cultivation 
of wheat. Wheat blast caused by the ascomycetous fungus 
Magnaporthe oryzae (Triticum pathotype - MoT) [5] is currently 
the most devastating wheat disease limiting wheat production. 
Wheat blast is new to Asia, known to cause significant crop 
losses in some South American countries with warm and 
humid condition. The disease was first observed in the state 
of Paraná, Brazil, in 1985 [6]. Wheat blast emerged for the first 
time in 2016 in several southwestern and southern districts 
of Bangladesh viz., Pabna, Kushtia, Meherpur, Chuadanga, 
Jhenaidah, Jessore, Barisal, and Bhola. Almost 3.5% of total 
wheat coverage (15000 ha) in Bangladesh was affected by the 
wheat blast that dwindled total wheat production by 15% [5,7]. 
Comparative genome analyses revealed that the fungal isolates 
appeared in Bangladesh was clonal and closely related to highly 
aggressive MoT isolates from South America [5,7,8].
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Wheat blast is mainly a disease of spike, however, can occur 
on all aerial plant parts. Severity of the disease greatly depends 
upon weather conditions, cultivars, and plant organs infected 
[9,10]. Although exact weather conditions required for a 
field epidemic are not clear, most severe blast outbreaks have 
coincided with wet years; warm temperatures and high humidity 
[10]. Whereas, disease management become challenging due 
to limited knowledge on the factors responsible for wheat blast 
epidemics However, wheat blast fungus has physiologically and 
genetically complex character, with a range of aggressiveness and 
pathotypes. Most of the wheat cultivars are susceptible to wheat 
blast in Bangladesh [5]. Some studies showed the presence of 
partially tolerance but the mechanisms is totally unknown [11,12]. 
Upon any kind of environmental stress condition, wheat plants 
are being accounted by oxidative damage through accumulation 
of reactive oxygen species (ROS) inside the cells inhibiting both 
growth and grain yield [13]. Over-accumulation of ROS affects 
cellular redox homeostasis and causes oxidative stress [14,15] and 
plants tend to protect the damage of cell via activating antioxidant 
mechanism [13]. The antioxidant enzymes comprise of several 
enzymes such as ascorbate peroxidase (APX), catalase (CAT), 
guaicol peroxidase (POD), superoxide dismutase (SOD) etc. In 
wheat, oxidative stress induced by different biotic and abiotic 
stresses, cause an alteration in the activity of SOD, APX, CAT, 
POD and in the ROS concentration are reported both in field 
and laboratory conditions [16, 17, 18, 19, 20]. Tolerant genotypes 
generally consist of higher antioxidant activity causing less damage 
to the cell, which is solely depends on genetic potentiality of 
cultivars [13, 21]. Although, involvement of antioxidant systems 
in pathogen infection have been well documented [22, 23]. 
Only few studies investigated the relationship between change 
in antioxidant mechanism to host resistance. There is no report/
work in terms of the tolerance of commercially cultivated 
wheat genotypes and their tolerance mechanism in Bangladesh. 
Therefore, this study was aimed to find out blast resistant wheat 
varieties/cultivars among the old and newly released varieties in 
Bangladesh and also to measure antioxidant enzymatic activity, 
ROS accumulation and cell membrane damage (MDA), to know 
the genetic potential of tolerant and susceptible cultivars.

MATERIALS AND METHODS

Plant Materials and Growth Condition

Sixteen varieties/cultivars collected from Bangladesh Agricultural 
Research Institute (BARI) namely Kheri, Kanchan, Sourav, 
Gourav, Shatabdi, Sufi, BARI Gom 25, BARI Gom 26, BARI Gom 
27, BARI Gom 28, BARI Gom 29, BARI Gom 30, BARI Gom 
31, BARI Gom 32, BARI Gom 33 and BROUCK 100 were used 
for this study. Seeds were surface sterilized and sown on small 
pots containing soil. Twenty one days old seedlings were used 
for fungal inoculation. At the same time seeds were also sown 
in the experimental field laboratory under natural condition to 
evaluate different yield and yield contributing characters.

Inocula Preparation, Inoculation and Evaluation

Wheat blast isolates were cultured on readymade oatmeal 
agar at 26oC for 17  days. The surface of culture media was 

then gently rubbed with a sterile paint brush to remove aerial 
mycelia and then exposed for 3  days to fluorescent light at 
26oC to induce sporulation. Conidia from sporulated culture 
media were scraped and suspended in water containing Tween 
20  (0.01%), then filtered and adjusted the concentration of 
conidia to 1×105 µL water. The conidial suspension was sprayed 
on 21 days old wheat seedlings, incubated at 25oC temperature 
in a humid chamber for 24 hrs. After incubation, seedlings 
tray were transferred to a temperature controlled plant growth 
room at 28±1oC. Disease score were measured by following 
Standard Evaluation System (SES, IRRI) [24] after seven days 
of inoculation.

Antioxidant Enzyme Activity Assay

Activities of catalase (CAT) (EC 1.11.1.6) [25], Guaiacol 
peroxidase (POD) (EC 1.11.1.6) [26], and Ascorbate peroxidase 
(APX) (EC 1.10.3.3) [26] were measured in inoculated plants. 
Fifty milligrams of fresh plant sample were collected and 
homogenized with 3 ml of 50 mM potassium phosphate buffer 
(pH 8.0) in a mortar and pestle. The homogenate was centrifuged 
at 12,000 rpm for 10 min. In all stages, 40C temperature was 
maintained. The clear supernatant was used for assaying CAT, 
POD, APX activity. To measure CAT activity 0.1 mL of enzyme 
extract was added to a 0.7 mL of 50 mM potassium phosphate 
buffer (pH 8.0), 0.1 ml of EDTA and 0.1 ml of H2O2 mixture and 
changes in absorbance were recorded immediately at 240 nm at 
30 seconds interval for two minutes. POD activity was measured 
by adding 0.1 ml of enzyme extract to a mixture of 0.6 ml of 
50 mM potassium phosphate buffer (pH 8.0), 0.1 ml of EDTA, 
0.1 ml of H2O2 and 0.1 ml of guaiacol, and changes in absorbance 
were recorded immediately at 470 nm at 30 seconds interval for 
two minutes. 0.1 mL of enzyme extract was added to 0.6 ml of 
50 mM potassium phosphate buffer (pH 8.0), 0.1 ml of EDTA, 
0.1 ml of H2O2 and 0.1 ml of ascorbate mixture and changes in 
absorbance were recorded immediately at 290 nm at 30 seconds 
interval for two minutes to measure APX activity.

Determination of Hydrogen Peroxide (H2O2) and 
Malondialdehyde (MDA) Activity

Malondialdehyde (MDA) and Hydrogen peroxide (H2O2) 
content were measured according to the protocol by [27, 28]. 
Briefly, 0.1 g leaf tissue (with similar age, and young expanded 
leaf) was ground into powder with liquid nitrogen, and then the 
powder was put into a tube containing 1 ml 0.1% (w/v) TCA 
and mixed by inverting the tube to homogenize the leaf tissue. 
Homogenized samples were centrifuged at 10,000  rpm  for 
10 min, and then the supernatants were transferred to a new 
tube. After centrifugation, the supernatants were kept in dark 
for 1 h after mixing with phosphate buffer (10 mM, pH 7.0) and 
potassium iodide (1 M) (in the ratio of 0.5 ml 0.5 ml 1 ml). 
Absorbance of the resulting solution was recorded at 390 nm. 
For MDA content measurement, 4 ml of 20% TCA containing 
0.5% TBA was added to the supernatant and mixed well. The 
mixture was boiled at 95 °C for 15 min and quickly cooled on ice 
(TBA can interact with MDA and resulted into red compound 
in acidic buffer, so the content of MDA can be calculated by 
measuring the density of the resulting red compound with 
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spectrophotometer at 532 nm. All the steps were performed 
at 4 °C except absorbance measurement.

Statistical Analysis

All experiments were performed with at least three biological 
samples and three time repetition unless mentioned. Data 
analysis was performed using the Statistical tools (Student’s 
t-test) of Microsoft Excel software.

RESULTS

Assessment of Wheat Genotypes for Blast Tolerance

A number of sixteen wheat varieties/cultivars were grown in 
plastic tray filled up with soil (Fig. 1b) at plant growth room, 
Department of Genetics and Plant Breeding. The collected blast 
pathogen was grown on oat agar media (Fig. 1a) and conidial 
suspension were sprayed on twenty one days old seedlings and 
scoring were done seven days after inoculation (Fig. 1 c,d). On 
the basis of the system score 0 indicated 0% leaf area infection 
and score 9 denoted more than 65% leaf area infection. In score 
8 extensive leaf curling and browning of upper and middle 
leaves were prevalent. Plants were generally stunted and many 
plants were died. On the other hand in score 3 several lesions 
were randomly scattered within the plot and the lesions number 
were ranged from 1 to 4. In case of control plant, no lesions were 
developed. Among the cultivars tested, BARI Gom 33 scored 
as three (3); BARI Gom 20, BARI Gom 25 and BARI Gom 29 
scored as eight (8); and others were scored as seven (7). (Table 1)

Evaluation of Yield and its Attributing Traits in Tolerant 
and Susceptible Cultivars

The selected moderately tolerant variety BARI Gom 33 along 
with BARI Gom 25 (Score 8) and BARI Gom 31 (score 7) were 
also grown in the experimental field laboratory of Genetics & 
Plant Breeding department under natural growth condition 

for evaluation of normal yield and yield contributing traits 
such as days to 50% flowering, spikelets per spike, grains per 
spike, 100-grain weight. There is no marked difference among 
the genotypes in terms of tested traits under normal growth 
condition. The maximum value were obtained for spikelets 
number per spike in BARI Gom 25, grain number per spike 
in BARI Gom 31, 100-grain weight in BARI Gom 33 and yield 
per plant in BARI Gom 33 and minimum yield per plant were 
obtained in BARI Gom 31 (Table 2). Other some varieties were 
also tested for those characters (data not shown), but their 
performance was also not better than BARI Gom 33, BARI 
Gom 25.

H2O2 (Hydrogen Peroxide) and MDA (Malondialdehyde) 
Content; Antioxidant Enzyme Activity

Upon inoculation of blast pathogen the content of H2O2, MDA 
were tested in both tolerant and susceptible genotypes. It was 
found that accumulation of both compound were less in BARI 
Gom 33, high in BARI Gom 25 and BARI Gom 31 after seven 
days of inoculation (Figure  2a). The different antioxidant 
enzyme (APX, CAT, POD) involved in the detoxification of 
oxidative stress were also estimated and in all cases the activity 
is high in tolerant genotypes BARI Gom 33 as compared to 
susceptible variety BARI Gom 25 and BARI Gom 31 (Figure 2b).

DISCUSSION

A number of total sixteen wheat varieties including some 
recent cultivars were collected from BARI and undergoes for 
their disease resistance at seedling stage and also phenotypic 
evaluation for yield and yield contributing characters were 
performed under normal field condition. The evaluations of 
tolerance among the collected cultivars were measured by the 
Standard Evaluation System (SES) [24]. Upon inoculation 
of M. oryzae pv triticum, plant showed stunted growth and 
developed lesions on the leaf. Among the cultivars, BARI Gom 
20 (Gourav), BARI Gom 25 and BARI Gom 29 were found more 
susceptible to MoT as it scored 8 (Table 1). According to SES, 
in score 7, tips of most upper leaves were curling, upper and 
middle leaves were brown and most of the leaves were going to 
be dead. Kheri, Kanchan, BARI Gom 19 (Sourav), BARI Gom 

Table 1: Assessment of wheat cultivars in terms of leaf injury 
score after inoculating wheat blast pathogen
Name of cultivar/variety Disease score Name of cultivar/

variety
Disease score

Kheri 7 BARI Gom 27 7
Kanchan 7 BARI Gom 28 7
BARI Gom 19 (Sourav) 7 BARI Gom 29 8
BARI Gom 20 (Gourav) 8 BARI Gom 30 7
BARI Gom 21 (Shatabdi) 7 BARI Gom 31  

(BAW-1182)
7

BARI Gom 22 (Sufi) 7 BARI Gom 32  
(BAW-1202)

7

BARI Gom 25 8 BARI Gom 33  
(BAW-1260)

3

BARI Gom 26 7 BROUCK-100  
(BAW-1300)

7
Figure 1 Assessment of wheat genotypes tolerance to Magnaporthe 
oryzae pv Triticum. a) Inocula preparation; b) Growing of plant in plastic 
tray; c, d) Plant after inoculation and scoring stage
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21 (Shatabdi), BARI Gom 22 (Sufi), BARI Gom 26, BARI Gom 
27, BARI Gom 28, BARI Gom 30, BARI Gom 31 (BAW-1182), 
BARI Gom 32 (BAW-1202), BROUCK 100 (BAW-1300) were 
found susceptible to MoT as it scored 7 [24]. On the other hand 
in score 3 several lesions were randomly scattered within the plot 
and the lesions number were ranged from 1 to 4. Only BARI 
Gom 33 showed resistance to MoT as it scored 3 [24], having 
similarity to the finding of other researcher [29]. The partially 
tolerant BARI Gom 33 showed similar rather better performance 
in terms of yield and yield contributing traits under natural field 
condition which is also similar to the results of [29] indicating 
their greater performance under normal and stressed condition.

The identified tolerant and susceptible varieties were 
biochemically analyzed to understand the response of 
antioxidant system in tolerance mechanism. Biotic stress 
generally leads to an overproduction of reactive oxygen species 
(ROS) like H2O2 and MDA which are responsible for oxidative 
stress. During pathogenic infection, ROS accumulation is 
important defensive mechanism [30] which mainly happened 
due to imbalance between their production and host defense 
responses that cause damage to the host. Plant cell activate 

a number of enzymatic and non-enzymatic systems to cope 
the situation and maintain constant level in cells [31]. In the 
present study, higher accumulation of hydrogen peroxide (H2O2) 
during infection by MoT contributed to higher concentration 
of malondealdehyde (MDA) in BARI Gom 31 and BARI Gom 
25 as compared to BARI Gom 33. In case of tomato plants 
infected by Fusarium oxysporum, overaccumulation of ROS also 
results in increased lipid peroxidation [32]. Oxidative stress 
related cellular damage can be estimated by lipid peroxidation 
products, in which MDA is a great indicator. Cellular stress 
also occurred due to some toxins produced by pathogen that 
are cytotoxic to cell in rice   [33] and can cause rapid lipid 
peroxidation and cellular damage [34]. The lower enzymatic 
activity of APX, CAT and POD were observed in BARI Gom 
25 and BARI Gom 31, but higher in BARI Gom 33. The higher 
activity of those enzymes in BARI Gom 33 during pathogen 
infection resulted in the lower concentrations of H2O2, and 
subsequently reduced the cellular damages caused by ROS. 
Therefore, the difference in the activity of CAT, APX and 
SOD in tolerant and susceptible cultivars suggested that these 
enzymes played a major role for resistance in BARI Gom 33 to 
blast. The higher catalase activity was also observed in resistant 

Table 2: Evaluation of tolerant and susceptible cultivars in terms of yield and its contributing traits
Variety / Cultivar Days to 50 % flowering Spikelets/spike Grains/spike 100-grain weight (g) Yield/plant (g)

BARI Gom 33 (BAW-1260) 69 19 51 3.5 9.5
BARI Gom 31 (BAW-1120) 70 18 59 3.0 8.5
BARI Gom 25 67 21 47 3.3 9.0

Figure 2 Antioxidant activity in response to disease infection a) MDA and H2O2 content b) APX, CAT and POD activity in moderately tolerant and 
susceptible genotype under disease condition

b
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lines of maize against Aspergillus flavus than susceptible one 
[30]; in tomato leaf against B. cincero infection resulting in 
reduced lesion formation [35] and their involvement against 
abiotic stresses was also documented [35]. Peroxidase (POX) 
activity is very much important in wheat cultivars against 
Rhizoctonia cerealis and also detrimental to resistance during 
late stages of infection against P. oryzae [36], is very much 
similar to the present study which showed higher level of 
POD activity in BARI Gom 33 during pathogen infection. The 
enzyme APX removed H2O2 from chloroplast, peroxisomes 
and mitochondria [37] and their increased activity have been 
well described during fungal infection  [38]. In present study 
increased APX activity in BARI Gom 33 also suggested their 
role in defense mechanism. Increased of both transcript and 
activity of APZ was also observed in barley leaves inoculated 
by B. graminis [39]. The higher activity of APX, CAT and POD 
in BARI Gom 33 compared to BARI Gom 25 and BARI Gom 
31 during pathogen infection resulted in lower accumulation 
of H2O2 and subsequently reduced MDA content restricting 
cellular damage caused by ROS. The result of the present 
study indicated the presence of a more efficient antioxidative 
defense mechanism in BARI Gom 33 which reduced the cellular 
damage by the removal of excess ROS accumulation during 
the infection of M. oryzae pv triticum, contributing partially 
resistance to blast. Further research may aimed to develop 
biochemical marker using antioxidant system in breeding 
program to select/develop blast resistant wheat variety suitable 
for blast prone areas in the world.

CONCLUSION

Among the sixteen cultivars of wheat tested against M. oryze 
pv triticum, blast severity in BARI Gom 33 is lower and the 
phenotypic performance of BARI Gom 33 in terms of yield 
and yield contributing traits is almost same or better in some 
extent compare to all other varieties. BARI Gom 33 exhibited 
an increased antioxidant enzyme activity than susceptible 
cultivars BARI Gom 25 and BARI Gom 31, contributed to 
lower concentration of reactive oxygen species (ROS) limits 
the cellular damage during the infection process of MoT, thus 
showing greater resistance to blast in wheat.
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