REGULAR ARTICLE

INFLUENCE OF CADMIUM ON GROWTH AND BIOCHEMICAL CONTENTS OF TOMATO PLANTS

A. NATARAJAN¹, P. VIJAYARENGAN², M. VIJAYARAGAVAN²

¹Department of Botany, Annamalai University, Annamalai Nagar 608002, Tamilnadu India
²Department of Botany, Government Arts College, Thiruvannamalai, Tamilnadu, India

ABSTRACT

The increasing concentrations (10, 25, 50, 75 and 100 mg/kg) of soil cadmium on growth and biochemical contents in tomato plants were analysed on 30th sampling days. Control plants were maintained separately. Plants were grown in pots containing 3 kg of air dried sandy loam soil and treated with different concentrations (mg/kg) of cadmium (0, 10, 25, 50, 75 and 100). Treatments decreased the growth parameters such as root and shoot length and biochemical constituents such as protein, (except, proline and phenol content) contents in tomato plants compared to untreated plants. The shoot length of cadmium treated tomato plants was higher than the root length. Proline and phenol content of root of tomato plants was higher than the shoot.

Keywords: Cadmium, Tomato, Growth, Biochemical, Phenol.

INTRODUCTION

Throughout the world the heavy metal pollution is causing great threat all organisms [1]. Accumulation of heavy metals in plants may be a serious problem [2], since there are chances of entering to the potential food web [3]. The contamination of food chain by plant accumulated heavy metals is current hot issue worldwide, as it causes serious health hazards, and identification and control should be taken care with serious actions [4-5].

The present study aimed to identify the extent of changes in growth parameters such as, root and shoot length and biochemical constituents such as, protein, proline and phenol contents in tomato plants due to cadmium toxicity.

MATERIALS AND METHODS

The certified seeds of tomato were obtained from Tamilnadu Agriculture University (TNAU), Agricultural Research Station, Aduthurai, Thanjavur district (TN), India. Seeds with uniform size, colour and weight were chosen for the experimental purpose. The soil used in the experiment was red soil 40%+sandy loam 60% in nature and pH of the soils was 7.2. It contains major nutrients of 118 kg available N, 88 kg P and 106 kg k/ha and micronutrients of 21.89 mg available Cu, 210.11 mg Fe, 168 mg Mn and 28.13 mg Zn/kg, cadmium was not available in this experimental soil. The cadmium chloride (Cd Cl₂ H₂O) was used as cadmium source.

The pot culture experiments were conducted in Botanical Garden, Annamalai University. Tomato plants were grown in pots containing untreated soil (Control) and soil mixed with various levels of cadmium (viz., 10, 25, 50, 75 and 100 mg kg⁻¹). The inner surfaces of pots were lined with a polythene sheet. Each pot contained 3 kg of air dried soil. Six seeds were sown in each pot. All pots were watered to field capacity daily. Plants were thinned to a maximum of three per pots, after a week of germination. Each treatment including the control was replicated three times.

The pot samples were collected on 30th days after sowing. Three plants from each replicates of pots were analyzed for the various growth parameters such as root and shoot length and biochemicals such as, protein, proline and phenol contents. Roots and shoots of treated and control plants were used for the estimation of protein contents as per Lowry et al. [6], proline as per Bates et al. [7] and total phenols as per Singleton and Rossi [8] methods.

RESULTS AND DISCUSSION

Physio-chemical properties of the soil are given in table-1. The effect of cadmium on growth parameters such as root and shoot length of tomato plants are presented in Figure-1. All growth parameters of cadmium treated plants (10, 25, 30, 45, 75 and 100 mg/kg) were significantly decreased compared to untreated plants. The shoot length of cadmium treated tomato plants was higher than the root length. Proline and phenol content of root of tomato plants was higher than the shoot.

Received 01 March 2018; Accepted 03 April 2018

*Corresponding Author

P. Vijayarengan

Department of Botany, Annamalai University, Annamalai Nagar 608002, Tamil Nadu, India

Email: natarajansiva78@gmail.com; drpviyarengan@yahoo.com

©This article is open access and licensed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited. Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.
50, 75 and 100 mg kg\(^{-1}\)) gradually decreased when compared to untreated plants. The maximum root and shoot length were recorded in control plants on 30th sampling days. The minimum value of all growth parameters were found in 100 mg kg\(^{-1}\) of cadmium treated plants. Our results are in agreement with the findings of Juwarkar and Shende and Yi and Ching [9-10]. Xu et al. [11] also suggested that the higher concentrations of cadmium can cause cell growth inhibition. Schutzendubel et al. [12] who reported that the cadmium also induced the generation of reactive oxygen species (ROS). The growth reduction also reported by Hagemeyer and Breckle [13] and Marcano et al. [14].

Protein content
Perusal of data in Figure-2, reveal that the plants raised in cadmium treated soils were poorer in protein contents as compared to control plants in 30th sampling days. Higher the cadmium contents lesser the values of protein in both root and shoots of tomato. The above results were in agreement with the findings of Costa and Spitz [15] in Lupinus albus, Costa and Morel [16] in lettuce, Satyakala [17] in Pistia stratiotes and Dinakar et al. [18] in Arachis hypogaea. The decrease in protein content can be compared with the work of Dietz et al. [19]. Cadmium induced reduction of protein content was also reported by Jana [20]. The inhibitory action of cadmium on amino acid and protein content may be due to binding of metals with sulphydryl group of protein, causing deleterious effect in the normal protein form [21].

Phenol content
The results showed in Figure-3 indicated that the minimum proline content was in control (0.686, 0.488). With increase of cadmium (10, 25, 50, 75 and 100 mg kg\(^{-1}\) in soil), proline content was strongly increased in 30th sampling days. Maximum content of root and shoot was observed at 100 mg kg\(^{-1}\) cadmium level (1.754, 0.984) of soil. This can be compared with earlier reports [18, 22-26].

Table 1: Physio-chemical properties of the experimental soil

<table>
<thead>
<tr>
<th>Soil type</th>
<th>pH</th>
<th>EC</th>
<th>Moisture content</th>
<th>Organic carbon</th>
<th>Available(kg/h(^{-1}))</th>
<th>DTPA-TEA extractable (mg kg(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>Red+Sandy loam</td>
<td>7.2</td>
<td>0.4</td>
<td>20.10</td>
<td>0.56</td>
<td>118</td>
<td>88</td>
</tr>
</tbody>
</table>

![Fig. 1: Effect of cadmium on root and shoot length of tomato plants](image1)

![Fig. 2: Effect of cadmium on protein content of tomato plants](image2)

![Fig. 3: Effect of cadmium on proline content of tomato plants](image3)

![Fig. 4: Effect of cadmium on phenol content of tomato plants](image4)
REFERENCES

5. Lokeshwar H Chandrappa GT, Impact of Heavy Metal Contamination of Bellandur Lake on Soil and Cultivated Vegetation, Current Science 2006;91:622-627.