ETHNO-MEDICINAL, PHYTOCHEMICAL AND ANTIMICROBIAL STUDIES OF *EUPHORBIA TIRUCALLI* L.

Bhuvaneshwar Upadhyay*, K.P. Singh and Ashwani Kumar

Biotechnology lab, Department of Botany & P. G. School of Biotechnology, University of Rajasthan, Jaipur, India

SUMMARY

Present study exposed various claims about the medicinal properties of *Euphorbia tirucalli* L., used by the indigenous people of Rajasthan to cure rheumatism, Skin disorders, Cough and other ailments. This plant was assessed for ethnopharmacological screenings, phytochemical analysis and antimicrobial screenings which also include anti-HIV activity, so as to validate the efficacy of indigenous herbal medicine. In the present study antimicrobial activity of the crude alcoholic extracts of leaf and stem of *E. tirucalli* against the known enteric pathogens was carried out. Anti-HIV screening activity was carried out using HIV Protease colorimetric Assay. Low MIC exhibited by the extract against *S. aureus* is of great significance in the healthcare delivery system, since it could be used as an alternative to orthodox antibiotics in the treatment of infections caused by these microbes, especially as they frequently developing resistance to known antibiotics.

Key words: Alkaloids, Triterpenes, Antimicrobial activity, anti-Carcinogenic, Anti-HIV

Corresponding Author, Email: bhuvan.com@gmail.com

1. Introduction

Current research on natural molecules and products primarily focuses on plants, they can be sourced, and selected more easily based on their ethno-medicinal use (Verpoorte et al., 2005). Plant derived medicines have been part of traditional health care system in most parts of the world for thousands of years and nowadays there is increasing interest in plants as sources of agents to fight microbial diseases (Natarajan et al., 2005).

The beneficial medicinal effects of plant materials typically result from the combinations of secondary products present in the plant. Plants produce secondary metabolites as defenses against animals, parasites, bacteria, and viruses, and so rely on these chemical and other deterrents for their survival. These secondary metabolites constitute the medicinal value of a drug plant, which produces a definite physiological action on human body (Sharma et al., 2007).

Many studies focus on determining the antimicrobial activity of plant extracts, found in folk medicine (Ngwendson et al., 2003), essential oils (Alma et al., 2003; Maria et al., 2008) or isolated compounds such as alkaloids (Klausmeyer et al., 2004; Vanessa et al., 2008), sesquiterpene lactones (Lin et al., 2003), triterpenes (Katerere et al., 2003) or naphtoquinones (Machado et al., 2003), flavonoids (Sohn et al., 2004), diterpenes (Siegfried et al., 2006), etc. Some of these compounds were isolated or obtained by bioactivity-guided isolation after previously detected antimicrobial activity on the part of the plant.

Euphorbia tirucalli L. (Family, Euphorbiaceae) a succulent cactus-like plant growing to a height of about 10 m, was introduced from Africa as a garden plant. *E. tirucalli* grows in arid zones as well as zones that are more mesophytic, the species makes a good living fence post. The plant grows well in dry regions or land that is not suitable for growing food. *E. tirucalli* is called *petroleum plant* because it produces a hydrocarbon substance very much like gasoline. Whole plant harvesting is
worthwhile from energy point-of-view with rubber, petroleum, and alcohol as energy products and resins, which may find use in the linoleum, oilskin, and leather industries. The charcoal derived there from can be used in gunpowder.

Many pharmacological activities of *E. tirucalli* have been documented by many workers as molluscicidal activity (Jurberg et al., 1985; Tiwari et al., 2003), antibacterial activity (Lirio et al., 1998), antitherpetic activity (Betancur-Galvis et al., 2002) and anti-mutagenic (Rezende et al., 2004). Latex also shows co-carcinogenic (Gscwhenot and Hecker, 1969) and anti-carcinogenic activities (Hecker, 1968). The inhibition of the ascitic tumor in mice has also been reported by Valadares et al. (2006). In the northeast region of Brazil, the latex of *E. tirucalli* is used as an antimicrobial agent; a laxative agent; to control intestinal parasites; to treat asthma, cough, earache, rheumatism, verrucae, cancer, chancre, epithelioma, sarcoma, skin tumors and as a folk remedy against syphilis (Correia, 1994; Betancur-Galvis et al., 2002).

Exposure to *E. tirucalli* has been suggested as an important environmental risk factor for African Burkitt’s lymphoma (Van den Bosch et al., 1993; Imai et al., 1994; MacNeil et al., 2003). In *E. tirucalli* 4-deoxyphorbol ester, has been clinically documented to enhance Epstein-Barr virus (EBV) infection, causing damage to immune cell’s DNA and induce rearrangement in the chromosomes, particularly in chromosome 8, which causes a suppression of the immune system (Aya et al., 1991; Jurberg et al., 1985; Almeida, 1993; Costa, 2002; Tiwari et al., 2003).

The stem contains alcohol eufol, a-euforbol and taraxasterol, tirucallol (Costa, 2002; Almeida, 1993), hentriacontene, hentriacontanol, the antitumor steroid β-sitosterol, taraxerol, 3,3′-di-O-methyllellagic acid, ellagic acid, and a glycoside fraction which hydrolyses to give kampferol and glucose. The whole plant contains 7.4% citric acid with some malonic and some bernstein (succinic) acids (List and Horhammer, 1969). The latex of *Euphorbia tirucalli* contains as irritant constituents ingenane- and tigliane-type diterpene esters derived from the parent alcohols ingenol and phorbol (Furstenberger and Hecker, 1986). The main irritant constituents are isomeric 12,13-acetates, acylates of phorbol as well as 3-acylates of ingenol (Imai et al., 1994). In the acyl moiety of phorbol esters investigated in detail, an increasing number of C-atoms or an increasing number of double bonds at a fixed number of C-atoms leads to an increase of irritant activity.

As compared to their saturated analogs, corresponding unsaturated phorbol esters exhibit similar irritant activities (Duke, 1983). On the other hand, by an increasing number of conjugated double bonds in the acyl moieties of phorbol esters, the promoting activity is decreased, thus indicating that irritant activity is a necessary, but insufficient, requirement for promoting activity of phorbol esters (Furstenberger and Hecker, 1977). The latex contains 53.8-79.9% water and water solubles and 2.8-3.8% caoutchouc. Fresh latex contains a terpenic alcohol, isoeuphorol (C_{30}H_{50}O), Dried latex contains no isoeuphorol but a ketone euphorone (C_{30}H_{48}O) (Uzabakiliho et al., 1987). Resin, however, is the principal constituent (75.8-82.1%) of the dried latex. The stem contains hentriacontene, hentriacontanol, the antitumor steroid 4-deoxy-phorbol ester, beta-sitosterol, caoutchouc, casuarin, corilagin, cycloeuphordenol, cyclotirucanenol, ellagic acids, euphorbins, euphol, euphorone, euphorcinol, gallic acids and glucosides (Khan and Malik, 1990). Therefore the present study has been undertaken to investigate the antimicrobial activity of leaf extract of *Euphorbia tirucalli* by disc diffusion method.

2. Materials and Methods

Extraction of the plants

The leaves of *E. tirucalli* were collected from regional areas of Jaipur city, during post monsoon period and were authenticated by botanists at Dept. of Botany, University of Rajasthan, Jaipur, India and a specimen sample is kept in our institution (herbarium voucher numbers RUBL 20279). Shade dried coarsely powdered leaves (44 g) and stem (36 g) of *E. tirucalli* were subjected to successive
extraction with methanol (54-55.5°C) for 24-36 hr using a soxhlet extractor separately. These crude extracts were concentrated using vacuum evaporator. The extract yield was 2.6g (5.9%) and 16 g (4.44%) respectively. Percent yield was calculated by using following formula. One gram of the dried filtrate was reconstituted with 10 ml of 100% dimethylsulfoxide (DMSO).

Paper disks (diameter 6mm) were then impregnated with 25µl, 50µl, and 75µl of the final extract, which is equivalent of 2.5, 5, and 7.5mg/ml of dried plant material. Filter paper discs (Whatman No. 1) of 5mm diameter were loaded with 1 ml of crude extracts. Once the DMSO had evaporated, the disks were placed in a refrigerator and stored in darkness for the duration of the assays. 0.01ml of one of the 24 h broth cultures culture (10^5 bacteria per ml) were spread on sterilized nutrient agar media and impregnated discs were placed on it and incubated for 24 h at 37°C.

Preparation of micro-organism culture

In vitro antimicrobial activity of the different extracts of E. tirucalli was studied by disc diffusion method using different concentrations on different microbial strains such as Escherichia coli (ATCC 25922 and Clinical isolate), Proteus vulgaris (ATCC 13315), Salmonella enteritidis (clinical isolate), Bacillus subtilis (ATCC 6633), Staphylococcus aureus (ATCC 6538P and clinical isolate), Pseudomonas aeruginosa (ATCC 9027 and clinical isolate), Klebsiella pneumoniae (ATCC 13883), Candida albicans (ATCC10231 and clinical isolate), C. tropicalis (clinical isolate), Aspergillus niger, A. fumigatus, A. flavus and Fusarium oxysporum. The bacterial cultures were obtained from Pathology Lab, Bhagwan Mahaveer Cancer Hospital and Research Centre, Jaipur, and fungal cultures were obtained from microbiology lab, Department of Botany, University of Rajasthan, Jaipur.

All the bacteria were incubated at 30 ± 0.1°C for 24 hours by inoculation into Nutrient Broth (Sigma). Sterilized Petri dishes (9 cm diameter) were inoculated with 0.01 ml of one of the above culture media (10^6 bacteria per ml). Muller-Hinton agar (Sigma), sterilized in a flask and cooled to 45–50°C, was distributed by pipette (15 ml) into each inoculated Petri dish and swirled to distribute the medium homogeneously. Discs injected with extracts were applied on the solid agar medium by pressing slightly (Collins et al., 1989, Bradshaw, 1992). The treated Petri dishes were placed at 4°C for 2 hours and then incubated at 35 ± 0.1°C for 24 hours.

The fungal strains were maintained on the Potato Dextrose Agar (HI-MEDIA) and stored at 4°C. Cultures were reactivated before test. Potato Dextrose Agar plates were used for the activation and incubated for 16-18 hours at 37°C. For inoculation Aspergillus sp. dried spores were distributed uniformly on the surface of agar plates with the help of a sterile cotton swab. Fusarium oxysporum was inoculated by taking a piece of fungal colony on a sterile cotton swab and gently swabbing on the surface uniformly. The fungal growth was checked after 24, 48 and 72h depending on the period of incubation time required for a visible growth; 48h for Aspergillus niger, Aspergillus fumigatus, 72h for Aspergillus flavus and Fusarium oxysporum

At the end of the period, inhibition zones formed on the medium were measured with a transparent ruler in millimeters and compared with the standard drugs prepared by using standard antibiotics as Ampicillin (10µg/ml), Streptomycin (10µg/ml), and Tetracyclin (30µg/ml) for Bacteria, and Amphotericin B (25µg/ml), and Ketoconazole (30µg/ml) for Fungi in sterile distill water. The experiment was performed in triplicate, and average diameter of zone of inhibition was obtained.

Phytochemical investigation by TLC

The detection of active principles in medicinal plants plays a strategic role in the qualitative and quantitative phytochemical investigation of crude plant extracts. TLC is a

% Yield = \frac{\text{Weight of extract}}{\text{Dried weight of Sample}} \times 100
rapid and economical procedure for the
determination of the main active principles
of medicinal plants e.g., alkaloids, cardiac
glycosides, coumarins, flavonoids, saponins,
tannins, etc. TLC is also used for
fractionation of the extract obtained by
extraction procedure by using different
solvent compositions.

The plant extracts were analyzed on
silica gel layers with the aid of three solvent
systems and six spray reagents, each one
applied for the identification of active
principles according to their polarity. Spots
were visualized under short and long
wavelength ultraviolet lights and, the plates
were sprayed with a specific spray reagent.
The extent of the surface of the spot is a
measure for the quantity of the material
present (Pascual et al., 2002). The volume of
the spots applied on the chromatographic
plates was 5µl, corresponding to
approximately 300 µg for each dry extract.
Chromatography was performed in the
following solvent systems: Nonpolar solvent:
toluene-acetone (8:2); semi-polar solvent:
toluene-chloroform-acetone (40:25:35); polar
solvent: n-butanol-glacial acetic acid-water
(50:10:40). The chromatograms were
observed first without chemical treatment,
under UV 254 nm and UV 365 nm light, and
then using the spray reagents.

**Determination of Minimum Inhibitory
Concentration**

For determination of Minimum
Inhibitory Concentration (MIC), the method
of Cheesbrough (2000) was used. Stock
solutions were prepared by dissolving the
extracts in DMSO. Two-fold serial dilutions
were employed to determine MIC values.
Each microorganism was incubated with an
extract in duplicate tubes containing a total
volume of 10 mL.

The final concentration of extract was in
the range 0.1 to 1.5 mg/mL. Control tubes
without extract were constituted similarly.
Antibiotics were included as positive control
in different tubes. The MIC was the lowest
concentration of extract with no visible
bacterial growth or no turbidity.

**HIV-1 Protease inhibition assay (Jeffrey
and Christine, 1997)**

All enzymatic and non-enzymatic
reaction were performed in reaction vial i.e.
1.25 ml. eppendorf tubes. The peptidolysis of
the substrate peptide substrate- … (Ac-Arg-
Lys-Ile-Leu*Phe-Leu-Asp-Gly-NH2) by HIV-
1 protease was carried out in 10% DMSO,
0.1M NaCl, 50 mM KOAc, pH- 5.5. Peptidolysis was initiated with nanogram
quantities of HIV-1 protease and quenched
by the addition of 50 µg of a carbamylating
reagent; which consists of 0.6% KNCO and
10% DMSO in 0.2M K2HPO4, pH 7.0, and is
freshly prepared before use. After 3h at
ambient temperature the carbamylating
reaction is quenched by 100µl of color
mixture (antipyrine/H2SO4 reagent + oxime
reagent). Color development is accomplished
by a 16-h incubation in the dark at ambient
temperature followed by a 24 min incubation
at 45°C under a fluorescent light. The
absorbance is determined at 480 nm by Kary
100 UV-Visible spectrophotometer. The
background absorbance 0.1 to 0.03 caused by
the Cyanate is automatically subtracted by
taking it as a blank in reference tube. The free
Phe was used as a standard for the both
carbamylation and diacetylcarbamido
reactions. All steady- state enzymatic data
were analyzed manually. An standard curve
was also plotted for enzymatic reaction
(Fig.2).

3. Results and Discussion

In recent times ethnomedicinal and
traditional pharmacological approaches are
achieving great appreciation in modern
medicine, because the search for new
potential medicinal plants is often based on
an ethnomedicinal origin (Muthu et al., 2006).
Plants face many stresses like diseases, pests,
and drought etc. in their life cycle and in the
process to overcoming these stresses they
produce secondary metabolites, which are
not important for the metabolic functions of
the plant but help to face the stressful
conditions. Some of these secondary
metabolites have capacity to fight
microorganisms and can be used for
medicinal purposes (Anon, 1994; Muthu et al.,
2006).
The ethnomedicinal study reveals that *E. tirucalli* is a plant of very high ethnomedicinal value and its different parts are used as medicines by the local traditional healers (Table 1). Among the different plant parts, the leaves are most frequently used for the treatment of various diseases. The methods of preparation fall into many categories like, plant parts applied as a paste (38%), juice extracted from the fresh plant parts (24%), and powder made from fresh or dried plant parts (20%), some fresh plant parts (6%), and decoction (12%). External applications (mostly for skin diseases, snakebites, and wounds) and internal consumption of the preparations were involved in the treatment of diseases. Latex is used for asthma, cough, earache, neuralgia, rheumatism, toothache, and warts. The latex is diluted in water and used internally for snakebite, as well as benign and cancerous tumors. This correlates with the phytochemical studies of Correia (1994) and Betancur-Galvis *et al.* 2002.

Table 1: Ethnomedicinal importance of *E. tirucalli* in Rajasthan

<table>
<thead>
<tr>
<th>Part used</th>
<th>Disease treated</th>
<th>Mode of Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latex</td>
<td>Asthma</td>
<td>Five ml diluted latex is administered twice a day.</td>
</tr>
<tr>
<td></td>
<td>Cancer</td>
<td>Paste of Fresh leaves and latex is diluted with water and taken once a day</td>
</tr>
<tr>
<td></td>
<td>cough</td>
<td>Latex diluted with water taken twice a day</td>
</tr>
<tr>
<td></td>
<td>Ear problems</td>
<td>Latex is boiled in Mustard oil in ratio of 1:5, and 3 to 4 drops of this oil are dropped in affected ear twice a day</td>
</tr>
<tr>
<td></td>
<td>Snake bite and scorpion sting</td>
<td>About two gm of latex with about 100ml water is taken orally within 2 hours of snakes bite.</td>
</tr>
<tr>
<td></td>
<td>Toothache</td>
<td>A decoction obtained by boiling latex water in ratio of 1:6, This decoction is used as mouth wash twice a day</td>
</tr>
<tr>
<td></td>
<td>Intestinal parasites</td>
<td>Dried latex and a fine paste of seeds are taken internally with Luke warm water after each meal.</td>
</tr>
<tr>
<td></td>
<td>Skin problems</td>
<td>Fresh latex is applied on the affected area.</td>
</tr>
<tr>
<td>Leaves</td>
<td>Skin problems</td>
<td>Decoction of leaves applied on affected skin externally.</td>
</tr>
<tr>
<td></td>
<td>Nose ulcers and hemorrhoids</td>
<td>Poultice of the root or leaves is used for nose ulcers and hemorrhoids.</td>
</tr>
<tr>
<td>Stems</td>
<td>Thorn Extraction</td>
<td>The powdered stems are used as a poultice to extract thorns.</td>
</tr>
<tr>
<td></td>
<td>Swelling</td>
<td>Crushed stem are applied to swellings</td>
</tr>
<tr>
<td></td>
<td>leprosy and paralysis</td>
<td>Wood decoction is used for leprosy and paralysis of the hands and feet after childbirth.</td>
</tr>
<tr>
<td></td>
<td>colic and gastric problems</td>
<td>decoction of the branches is used for colic and gastric problems</td>
</tr>
<tr>
<td>Root</td>
<td>Rheumatism</td>
<td>Fresh root or latex and ‘Asgandh’ are taken in equal quantities and ground to a fine paste. Two gm Paste mixed with 5 gm honey is administered orally twice a day</td>
</tr>
</tbody>
</table>

The phytochemical estimation was done using Thin Layer Chromatography analysis of leaf extract of *E. tirucalli*. Results are presented in Table 2. In *E. tirucalli*, triterpenes were present in high concentration, alkaloids were present in average amount, and cardiac glycoside, poly-phenols, flavanoids and tannins were present in small amount, while saponin, and coumarin were not reported in this study.

Table 3 shows the antimicrobial activity of the methanolic extracts from the zone of inhibition produced by the extracts. It was observed that *E. coli* and *P. aeruginosa* were most sensitive to the leaf extract while *K. pneumoniae* and *S. aureus* were least sensitive to the methanolic leaf extract. Stem bark extract exhibited significant antimicrobial activity against *P. vulgaris*, *K. pneumonia* (Fig.1). The results of antimicrobial activity were consistent with previous reports (Dekker et al., 1983; Tomas-Barberan et al., 1990; Akihisa et al., 2002) on related Euphorbia species against Gram-negative bacteria. Unlike Gram-positive bacteria, the lipo-polysaccharide layer along with proteins and phospholipids are the major components in the outer surface of Gram-negative bacteria (Ferreira et al., 2001).
Table 3. Inhibition zone showing antimicrobial activities of Standard drugs and different extracts of *E. tirucalli* L.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2.5 mg</td>
<td>5 mg</td>
<td>7.5 mg</td>
<td>2.5 mg</td>
<td>5 mg</td>
<td>7.5 mg</td>
<td>10 µg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. subtilis (ATCC 6633)</td>
<td></td>
<td>9.0</td>
<td>11.5</td>
<td>12.5</td>
<td>8.5</td>
<td>13.5</td>
<td>17.0</td>
<td>19.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(46.39)*</td>
<td>(59.27)</td>
<td>(64.74)</td>
<td>(43.81)</td>
<td>(69.88)</td>
<td>(87.62)</td>
<td>(100)</td>
</tr>
<tr>
<td>E. coli (ATCC 25922)</td>
<td></td>
<td>9.5</td>
<td>17.0</td>
<td>19.5</td>
<td>9.0</td>
<td>14.0</td>
<td>18.5</td>
<td>20.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(46.11)</td>
<td>(82.52)</td>
<td>(94.66)</td>
<td>(43.68)</td>
<td>(67.96)</td>
<td>(89.80)</td>
<td>(100)</td>
</tr>
<tr>
<td>E. coli (clinical isolate)</td>
<td></td>
<td>6.3</td>
<td>8.6</td>
<td>13.2</td>
<td>7.2</td>
<td>9.6</td>
<td>16.3</td>
<td>18.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(34.42)</td>
<td>(46.99)</td>
<td>(72.13)</td>
<td>(39.34)</td>
<td>(52.45)</td>
<td>(89.07)</td>
<td>(100)</td>
</tr>
<tr>
<td>P. vulgaris (ATCC 13315)</td>
<td></td>
<td>8.0</td>
<td>15.5</td>
<td>17.5</td>
<td>12.6</td>
<td>14.5</td>
<td>21.5</td>
<td>22.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(35.55)</td>
<td>(68.88)</td>
<td>(77.77)</td>
<td>(56.0)</td>
<td>(64.44)</td>
<td>(95.55)</td>
<td>(100)</td>
</tr>
<tr>
<td>P. aeruginosa (ATCC 9027)</td>
<td></td>
<td>7.0</td>
<td>16.0</td>
<td>18.0</td>
<td>8.0</td>
<td>9.4</td>
<td>14.5</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(35.00)</td>
<td>(80.00)</td>
<td>(90.00)</td>
<td>(40.00)</td>
<td>(47.00)</td>
<td>(74.74)</td>
<td>(100)</td>
</tr>
<tr>
<td>P. aeruginosa (clinical isolate)</td>
<td></td>
<td>5.3</td>
<td>12.1</td>
<td>13.6</td>
<td>6.6</td>
<td>8.1</td>
<td>13.5</td>
<td>17.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(29.60)</td>
<td>(67.59)</td>
<td>(75.97)</td>
<td>(36.87)</td>
<td>(45.25)</td>
<td>(75.41)</td>
<td>(100)</td>
</tr>
<tr>
<td>S. aureus (ATCC 6538P)</td>
<td></td>
<td>6.0</td>
<td>8.5</td>
<td>18.79</td>
<td>9.5</td>
<td>14.0</td>
<td>16.5</td>
<td>19.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(30.76)</td>
<td>(43.58)</td>
<td>(96.41)</td>
<td>(48.71)</td>
<td>(71.79)</td>
<td>(84.61)</td>
<td>(100)</td>
</tr>
<tr>
<td>S. aureus (clinical isolate)</td>
<td></td>
<td>6.3</td>
<td>5.1</td>
<td>16.8</td>
<td>8.3</td>
<td>12.1</td>
<td>15.3</td>
<td>18.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(33.87)</td>
<td>(27.41)</td>
<td>(90.75)</td>
<td>(44.62)</td>
<td>(65.05)</td>
<td>(80.80)</td>
<td>(100)</td>
</tr>
<tr>
<td>S. enteritidis (clinical isolate)</td>
<td></td>
<td>6.5</td>
<td>10.0</td>
<td>16.5</td>
<td>10.6</td>
<td>15.0</td>
<td>18.0</td>
<td>20.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(31.86)</td>
<td>(49.01)</td>
<td>(80.88)</td>
<td>(51.96)</td>
<td>(73.59)</td>
<td>(88.23)</td>
<td>(100)</td>
</tr>
<tr>
<td>K. pneumonia (ATCC 13883)</td>
<td></td>
<td>5.5</td>
<td>9.0</td>
<td>11.8</td>
<td>9.5</td>
<td>14.0</td>
<td>18.0</td>
<td>19.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(28.20)</td>
<td>(46.15)</td>
<td>(60.51)</td>
<td>(48.71)</td>
<td>(71.79)</td>
<td>(92.30)</td>
<td>(100)</td>
</tr>
<tr>
<td>C. albicans (ATCC10231)</td>
<td></td>
<td>5.6</td>
<td>8.2</td>
<td>9.9</td>
<td>4.1</td>
<td>7.6</td>
<td>16.2</td>
<td>-</td>
</tr>
<tr>
<td>C. albicans (clinical isolate)</td>
<td></td>
<td>5.9</td>
<td>9.4</td>
<td>10.6</td>
<td>5.2</td>
<td>8.1</td>
<td>15.6</td>
<td>-</td>
</tr>
<tr>
<td>C. tropicalis (clinical isolate)</td>
<td></td>
<td>5.1</td>
<td>8.3</td>
<td>11.6</td>
<td>4.3</td>
<td>7.6</td>
<td>9.1</td>
<td>-</td>
</tr>
<tr>
<td>A. flavus (Lab isolate)</td>
<td></td>
<td>1</td>
<td>2.6</td>
<td>4.2</td>
<td>1.3</td>
<td>3.1</td>
<td>4.8</td>
<td>-</td>
</tr>
<tr>
<td>A. niger (Lab isolate)</td>
<td></td>
<td>1.1</td>
<td>2.3</td>
<td>3.8</td>
<td>1.2</td>
<td>2.4</td>
<td>3.6</td>
<td>-</td>
</tr>
<tr>
<td>A. fumigatus (Lab isolate)</td>
<td></td>
<td>1.5</td>
<td>2.6</td>
<td>4.6</td>
<td>1.2</td>
<td>2.3</td>
<td>4.6</td>
<td>-</td>
</tr>
<tr>
<td>F. oxysporum (Lab isolate)</td>
<td></td>
<td>0.6</td>
<td>1.6</td>
<td>4.2</td>
<td>1</td>
<td>2.1</td>
<td>3.1</td>
<td>-</td>
</tr>
</tbody>
</table>

Diameter of zone of inhibition in mm,
#Figures in parenthesis indicate percentage diameter inhibition, and the results shown are the mean of three replicates
*Inhibition zone of Streptomycin is considered as 100% to compare the extract efficacy in respect to standard antibiotics
The outer lipo-polysaccharide layer of cell wall slows down the accessment of most phytochemical compounds to the peptidoglycan layer. This is the cause why the Gram-negative strains have resistance to the toxic effect of plant extracts exhibiting antimicrobial activity. Infections caused by *S. aureus* are among the most difficult to treat with conventional antibiotics (Sueller and Russell, 2000).

Similar observations were made by Kuhnt et al., (1994), Meyer and Afolayan (1995) and Saxena et al., (1996) while studying the antimicrobial activity of *Hyptis berticillata*, *Helichrysum aureonitens* and *Moneses uniflora*, respectively. The weak activity shown by the acetone extract against the Gram negative bacteria could be due to the presence of compounds in the extract possessing lipophilic characteristics as suggested by Lall and Meyer (Lall and
Meyer, 2000). These observed antimicrobial properties agree with its use in traditional medicine. Traditionally, extracts of the plant are used in sore and wound healing, as eardrop for boils in the ear and treatment of boils. They are also used in the control of diarrhea and dysentery (Ajali et al., 2002; Annapurna et al., 2004).

The large zones of inhibition exhibited by the extract against *S. aureus* and *B. cereus* justified their use by traditional medical practitioners in the treatment of sores, bores, and open wounds (Parekh and Chanda, 2005).

In addition, the moderate growth inhibition against *E. coli* justifies its use in the control of diarrhea and dysentery. *E. coli* is the common cause of traveler’s diarrhea and other diarrheagenic infections in humans. From table 4 is clear that low MIC exhibited by the extract against *S. aureus* is of great significance in the health care delivery system, since it could be used as an alternative to orthodox antibiotics in the treatment of infections caused by these microbes, especially as they frequently develop resistance to known antibiotics (Lin et al., 2002).

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Tested organisms</th>
<th>MIC (mg/mL.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B. subtilis (ATCC 6633)</td>
<td>0.1</td>
</tr>
<tr>
<td>2.</td>
<td>E. coli (ATCC 25922)</td>
<td>na</td>
</tr>
<tr>
<td>3.</td>
<td>E. coli (clinical isolate)</td>
<td>0.1</td>
</tr>
<tr>
<td>4.</td>
<td>P. vulgaris (ATCC 13315)</td>
<td>0.25</td>
</tr>
<tr>
<td>5.</td>
<td>P. aeruginosa (ATCC 9027)</td>
<td>0.5</td>
</tr>
<tr>
<td>6.</td>
<td>P. aeruginosa (clinical isolate)</td>
<td>0.2</td>
</tr>
<tr>
<td>7.</td>
<td>S. aureus (ATCC 6538P)</td>
<td>1.0</td>
</tr>
<tr>
<td>8.</td>
<td>S. aureus (clinical isolate)</td>
<td>0.2</td>
</tr>
<tr>
<td>9.</td>
<td>S. enteritidis (clinical isolate)</td>
<td>>0.1</td>
</tr>
<tr>
<td>10.</td>
<td>K. pneumonia (ATCC 13883)</td>
<td>0.2</td>
</tr>
<tr>
<td>11.</td>
<td>A. flavus</td>
<td>0.5</td>
</tr>
<tr>
<td>12.</td>
<td>A. niger</td>
<td>0.2</td>
</tr>
<tr>
<td>13.</td>
<td>A. fumigatus</td>
<td>0.5</td>
</tr>
<tr>
<td>14.</td>
<td>F. oxysporum</td>
<td>>1</td>
</tr>
</tbody>
</table>

Table 4: Determination of Minimum Inhibitory Concentration (MIC)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Plant source</th>
<th>Absorbance (OD at 280 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OD of E. tirucalli extract</td>
<td>0.5386 ±0.005</td>
</tr>
<tr>
<td>2</td>
<td>OD of (+) control</td>
<td>0.00030±0005</td>
</tr>
<tr>
<td>3</td>
<td>OD of (-) control</td>
<td>0.65230±0005</td>
</tr>
</tbody>
</table>

Table 5: Results of Anti-HIV activity
Parasitic fungi cause many different diseases, which may be superficial, subcutaneous, or deep inside man and animals. In the superficial mycoses, the fungus is limited to the horny layer of the skin and to structures derived from it, while in the subcutaneous and deep mycoses there is a deeper invasion of the tissues (Laks and Pruner, 1989; Kwon-Chung and Bennett, 1992).

From table 3, Fig. 1 is clear that 7.5 mg/ml of leaf extract showed maximum antifungal activity with *A. fumigatus* with inhibitory zone of 4.6 mm diameter, which was followed by *F. oxysporum* and *A. flavus* at inhibitory zone of 4.2 mm diameter at 7.5 mg/ml extract concentration. In case of stem bark extract of *E. tirucalli* was observed, maximum inhibition was shown by *A. flavus* (4.8 mm), followed by *A. fumigatus* (4.6 mm). In terms of Minimum Inhibitory Concentration, minimum MIC was recorded in case of *A. niger* (0.2 mg/ml), which showed a less potential activity than *E. hirta*. MIC against *A. flavus* and *A. fumigatus* showed MIC of 0.5 mg/ml, and more than 1.0 mg/ml. MIC was showed by *F. oxysporum* (Table 4).

The various types of secondary metabolites are known to possess antimicrobial activities. These products may exert their action by resembling endogenous metabolites, ligands, hormones, signal transduction molecules, or neurotransmitters and thus have beneficial medicinal effects on humans due to similarities in their potential target sites. Flavonoids are found to be effective antimicrobial substances against a wide range of microorganisms, probably due to their ability to complex with extracellular and soluble proteins and to complex with bacterial cell wall; more lipophilic flavonoids may also disrupt microbial membrane.

Phenolics and polyphenols present in the plants are known to be toxic to microorganisms. Antimicrobial activity of tannins may be related to their ability to inactivate microbial adhesions, enzymes and cell envelope transport proteins, they also complex with polysaccharides. Many plant genetic resources have been analyzed for their active constituents possessing antimicrobial activities. The broad-spectrum antimicrobial activity exhibited by *E. tirucalli* may be attributed to the various active constituents present in it, which either due to their individual or combined action, exhibit antimicrobial activity. Hence, the present findings provide a scientific base for some of the medicinal claims of *Euphorbia tirucalli*. Considering these facts; traditional medicines and medicinal plants obviously represent a great source of novel leads for drug development.

Table 6: standard curve of enzymatic reaction

<table>
<thead>
<tr>
<th>Phe conc.(mM)</th>
<th>Absorbance (at 480 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.0989 ±0.005</td>
</tr>
<tr>
<td>0.04</td>
<td>0.1803 ±0.005</td>
</tr>
<tr>
<td>0.08</td>
<td>0.3351 ±0.005</td>
</tr>
<tr>
<td>0.1</td>
<td>0.4206 ±0.005</td>
</tr>
<tr>
<td>0.12</td>
<td>0.5036 ±0.005</td>
</tr>
<tr>
<td>0.2</td>
<td>0.7862 ±0.005</td>
</tr>
</tbody>
</table>

References

Alma, M.H., Mavi, A., Yildirim, A., Digrak,

Khan, A. Q. and Malik, A. 1990. A new macrocyclic diterpene ester from the

Saxena, G., S.W. Farmer, R.E.W. Hancock, G.H.N. Towers, 1996. Chlorochimaphilin:
a new antibiotic from Moneses uniflora.

Sharma, A., A.S. Mann, V, Gajbhiye, and
M.D.Kharya. 2007. Phytochemical profile
of Boswellia serrata: an overview.

Pharmacognosy Reviews, 1(1): 137-142

Siegfried, E.D., K.E. Mudau, S.F.van Vuuren,
and A.M. Viljoen; 2006. Antimicrobial
monomeric and dimeric diterpenes from
the leaves of Helichrysum tenax var.
tenax. Phytochemistry, 67 (7), 716-722

Sohn, H.Y., Son, K.H., Kwon, C.S., Kwon,
G.S., Kang, S.S., 2004. Antimicrobial and
cytotoxic activity of 18 prenylated
flavonoids isolated from medicinal plants:
Morus alba L., Morus mongolica Schneider,
Broussnetia papyrifera (L.) Vent, Sophora
flavesens Ait and Echinosophora koreensis
Nakai. Phytomedicine 11, 666– 672.

Triclosan and antibiotic resistance in
Staphylococcus aureus. Journal of
Antimicrobial Chemotherapy. 46:11-18.

Antibacterial activity of iso-flavonoids
isolated from Erythrina variegata against
methicillin-resistant Staphylococcus aureus.
Lett Appl Microbiol. 35: 494- 498.

of Euphorbia tirucalli plant against
freshwater target and non-target
organisms. Pakistan Journal of Biological
Sciences 6, 1423–1429.

Tomas-Barberan, F.A., E. Iniesta-Sanmartin,
Antimicrobial phenolic compounds from
three Spanish Helichrysum species.

Phytochemistry 29: 1093-1095.

Uzabakiliho, B., Largeau, C., Casadevall, E.
1987. Latex constituents of Euphorbia
candelabrum, Euphorbia grantii, Euphorbia
tirucalli and Synadenium grantii.

Phytochemistry 26(1): 3041-3046

Valadares, M.C., Carrucha, S.G., Accorsi,W.,
Quiroz, M.L.S., 2006. Euphorbia tirucalli
L. modulates myelopoiesis and enhances
the resistance of tumor bearing mice.
International Immu pharmacology 6, 294–
299.

Van den Bosch, C., Griffin, B.E., Kazembe, P.,
Dziweni, C., Kadzamira, L., 1993. Are
plant factors a missing link in the
evolution of endemic Burkitt’s
lymphoma? British Journal of Cancer, 68,
1232–1235.

Vaneesa, G., C.Z. Stuker, G.O.C. Dias, I.I.
Dalcol, R.A. Burrow, J.Schmidt, L.
Wessjohann, and A.F. Morel. Quinolone
alkaloids from Waltheria douradinha.

Phytochemistry, 69: 4, 994-999

Verpoorte, R., Choi, Y.H. and Kim, H,
K. 2005. Ethnopharmacology and
system biology: a perfect holistic
match. J. Ethnopharmacol. 100: 53-56.