Preliminary phytochemical screening of wild edible fruits from Boda and Kolli hills

S. P. Anand*, S. Deborah
PG and Research Department of Botany, National College (Autonomous), Tiruchirappalli, Tamil Nadu, India

ABSTRACT
Medicinal plant plays a key role for ailments of various chronic diseases due to the presence of phytochemical constituent. The preliminary phytochemical compounds were studied using the ethanol, ethyl acetate, diethyl ether, chloroform, and aqueous extracts of 15 wild edible fruits collected from Boda and Kolli hills. The phytochemical compounds such as phenol, tannins, saponin, alkaloid, flavonoids, steroids, phlobotannins, terpenoids, anthraquinones and cardiac glycosides were screened in 15 edible fruits using standard methods. The diethyl ether extract, ethyl acetate, and ethanol extract of the selected fruits shows the presence of phytochemicals compound. The highest occurrence shows the high therapeutic value possessing majority of a phytochemical constituent of active compounds. In further studies, the compound from these fruits was isolated and used for medicinal purposes.

KEY WORDS: Phytochemical compounds, therapeutic efficacy, wild edible fruits

INTRODUCTION
Herbal medicines are traditionally used about 80% of the world population primarily in developing country like India, for the primary health care (Kamboj, 2000). The traditional medicine plants help us a great promise as an easily available and low cost-effective medicinal agents to cure a wide range of ailments among the people particularly in a tropical area. The people consume several plant or plant derived formulations to cure various diseases and disinfection. Phytochemicals compounds are naturally occurring in medicinal plants parts such as leaves, stem bark, fruits, and roots. These compounds have the ability of defense mechanism against various diseases causing agents such as microbes and virus. Natural products from plants called secondary metabolites are the end products of primary metabolites such as carbohydrates, amino acid, chlorophyll, lipids and so on. They are synthesis large variety of chemical substances known as secondary metabolites which include alkaloids, steroids, flavonoids, terpenoids, glycoside, saponin, tannins, and phenolic compounds (Doss, 2009). The secondary metabolites are very good antioxidant compounds. The richness of phytochemical bioactive compound posses antioxidant, antitumor, anti-inflammatory, anti-atherosclerotic, antimutagenic, anticarcinogenic, antibacterial, antiviral, and antiparasitic activities (Rice-Evans et al., 1995; Ashok Kumar et al., 2008). In recent years, many investigations were progressed with unknown pharmacological activities for the source of therapeutic agents. The aim of this study was to evaluate the phytochemical compounds from aqueous, ethanol, diethyl ether, chloroform, and ethyl acetate extracts of 15 edible fruits.

MATERIALS AND METHODS
Phytochemical Screening Analysis of Secondary Metabolites
Phytochemical tests were carried out using various extract such as aqueous, ethanol, diethyl ether, chloroform, and ethyl acetate to identify various constitutes using standard methods of Trease and Evans, 1997 and Sofowra, 1993. The phytochemical tests in a brief account were conducted as following:
1. Phenol: The extract (0.5 g) was dissolved in 5 ml of distilled water. To this, add few drops of neutral (5%) ferric chloride solution. A dark green color indicated the presence of phenolic compounds.
2. Tannin: The one gram of fruit extract added with 100 ml of distilled water, boiled them, makes them to cool and filtered it. Add 1% ferric chloride drop by
drop to the filtrate. Green black precipitate shows the presence of tannin.

3. Saponins: About 2 ml of sodium bicarbonate (1%) was added to 1 ml of extract and shake it well. Lather like formation remains constant for some time is indicative of the presence of saponin.

4. Alkaloids: Crushed and filtered 1 ml of fruits extract was taken in a test tube. Then, add 2 ml of aqueous hydrochloric acid (1%). Heat it for few minutes. Furthermore, add 2-3 drops of dragendorff reagent in the solution. Reddish brown precipitate color appeared with turbidity depicts shows alkaloid presence.

5. Flavonoids: To the 5 ml of extract was taken, add 1 ml of sodium hydroxide solution (10%). Add two drops of concentrated hydrochloric acid in the side of the beaker. The yellow color changes to colorless which shows the presence of flavonoids.

6. Phlobatannins: The extract was added with 1 ml of aqueous hydrochloric acid (1%) followed by boiling. A red precipitate is indicates the presence of phlobatannins.

7. Steroids: 100 μl fresh extract was taken in a test tube and add 400 μl of acetic anhydride. Then, add 1 or 2 drops of concentrated sulfuric acid. Brown ring at the boundary of mixture shows the presence of steroids.

8. Terpenoids: 2 ml of the organic extract was taken. Then dissolve in 2 ml of chloroform and let them evaporated to dryness. Add 2 ml of concentrated sulfuric acid and heated for about 2 min. Development of a grayish color indicates the presence of terpenoids.

9. Anthraquinone: 1 ml of extract was taken. Add 2 ml of potassium hydroxide (5%). Filter it. A color change into pink was observed. These show the presence of anthraquinone.

10. Cardiac glycosides: 100 μl of extract was taken in a test tube and add 400 μl of acetic anhydride. Then, add 1-2 drops of concentrated sulfuric acid. The presence of glycosides shows by the appearance of blue-green color.

RESULTS AND DISCUSSION

Phytochemical analyzed on the selected 15 fruits extracts shows the presence of bioactive compound which is known to reveal medicinal properties as well as physiological activities (Sofowora, 1993). Screening of the plant extracts is to find out the presence of phytochemicals such as phenols, tannins, flavonoids, saponins, glycosides, steroids, terpenoids, and alkaloids. 10 phytochemical tests were showed the positive and negative in all extract of the 15 fruits extracts showed in Tables 1 and 2. The plant such as Coccinia indica, Carissa carandas, Carissa spinarum, Ficus benghalensis, Ficus religiosa, Hugnoia mystax, Limonia acidissima, Morinda pubescens, Murraya koenigii, Phoenix loureiroi, Pithecellobium dulce, Phyllanthus emblica, Syzygium cumini, Ziziphus mauritiana, and Ziziphus oenoplia is taken for phytochemical screening. Some of these plants may have the presence of secondary metabolites such as phenol, tannins, flavonoids, alkaloids, saponins, phlobatannins, steroids, terpenoids, anthraquinones, and cardiac glycosides.

Phenol is one of the omnipresent groups of plant metabolites (Singh et al., 2007). In this analysis, most of the selected edible fruits extracts have the presence of phenolic compound except the C. spinarum and L. acidissima. The presence of phenol had pharmacological properties such as anti-apoptosis, anticarcinogen, anti-inflammation, anti-aging, anti-atherosclerosis, inhibition of angiogenesis, cell proliferation activities, and cardiovascular protection (Han et al., 2007). C. carandas, C. spinarum, and L. acidissima show the presence of tannins. Tannins involve in protein synthesis. It is a large polyphenolic group of secondary compound. It contains sufficient hydroxyls groups and other suitable groups to form a strong complex with other macromolecules. The presence of tannin used as astringents against diarrhea (Yoshida et al., 1991), as diuretics (Hatano et al., 1991; Okuda et al., 1983), duodenal tumors (Saijo et al., 1989), anti-inflammatory, antiseptic, and hemostatic pharmaceuticals (Haslam, 1996). H. mystax, Z. mauritiana, and Z. oenoplia shows the presence of saponin in all solvent extracts. The presence of saponin is used to stop hemorrhage and for healing the wounds and ulcers, also it helps in red blood cell coagulation (Okwu and Josiah, 2006). Saponins helps as an anti-inflammatory (Just et al., 1998), precipitating and coagulating red blood cells, cholesterol binding properties, hemolytic activity, and bitterness (Okwu, 2004; Sodipo et al., 2000), and antibacterial properties (Epand et al., 2007). The H. mystax, L. acidissima, M. pubescens, M. koenigii, P. loureiroi, and P. dulce show the presence of alkaloid compounds. The alkaloids group shows the chemical compounds which contain basic nitrogen atoms. It produced by a large variety of organisms including bacteria, fungi, plants, and animals (Luch, 2009). It has importance medicinal properties is their cytotoxicity (Nobori et al., 1994), analgesic (Antherden, 1969), antispasmodic (Stray, 1998), and antibacterial (Stray, 1998). Flavonoids group helps in plant metabolites to provide cell signaling pathways and antioxidant activity. All fruits extract shows the presence of flavonoids compounds. Flavonoids are the important antibiotics group. These antibiotic principles are effective in defensive mechanism of the plants against different microbes (Hafiza, 2000). The presences of flavonoids are
used as pharmacological activity such as antimicrobial activity (Cowan, 1996), antioxidant (Salah et al., 1995), and anticancer activities (Del-Rio et al., 1997; Okwu, 2004). *C. indica*, *H. mystax*, *P. emblica*, *Z. mauritiana*, and *Z. oenoplia* shows the presence of phlobatannins. The phlobatannins are secondary metabolites belongs to phenolic compounds. The presence of phlobatannins has a medicinal properties of antioxidant (Kumari and Jain, 2015), anti-inflammatory (Okwu and Okwu, 2004), wound healing and analgesic activities (Ayinde et al., 2007). *C. carandas*, *F. benghalensis*, *F. religiosa*, *M. koenigii*, *P. loureiroi*, *P. emblica*, *S. cumini*, *Z. mauritiana*, and *Z. oenoplia* shows the presence of steroids. Steroids are cholesterol derived lipophilic group it is important secondary metabolites. The presence of steroids used in antihormones (Jovanovic et al., 2015), contraceptive drugs (Lopez et al., 2006), anticancer agents (Thao et al., 2015), cardiovascular agents (Rattanasopa et al., 2015), osteoporosis drugs (Hoppé et al., 2011), antibiotics, anesthetics, anti-inflammatory, and antiasthmatics (Aav et al., 2005). *M. koenigii*, *P. loureiroi*, *F. religiosa*, *H. mystax*, *P. emblica*, *S. cumini*, *Z. mauritiana*, and *Z. oenoplia* shows the presence of terpenoids. Terpenoids are secondary metabolites; it has molecular structures that containing carbon as backbones with isoprene units. Isoprene contains five carbon atoms. As a result, the number of carbon atoms is a multiple of five in any terpenoids. The terpenoids consist of two isoprene units, i.e., 10 carbon atoms. The classification of terpenoids based on the number of isoprene units (Ashour et al., 2010). The presence of terpenoids shows significant pharmacological activities, such as antiviral, antibacterial, antimalarial, anti-inflammatory, inhibition of cholesterol synthesis, and anticancer activities (Mahato and Sen, 1997). *L. acidissima*, *P. dulce*, *Z. mauritiana*, and *Z. oenoplia* shows the presence of anthraquinone. An anthraquinone are the secondary metabolites. The presence of anthraquinones has the

Table 1: Phytoscreening analysis of secondary metabolites

<table>
<thead>
<tr>
<th>Botanical name</th>
<th>Pheno</th>
<th>Tannin</th>
<th>Saponin</th>
<th>Alkaloids</th>
<th>Flavonoids</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EA</td>
<td>E</td>
<td>A</td>
<td>DEE</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>EA</td>
<td>E</td>
<td>A</td>
<td>DEE</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>EA</td>
<td>E</td>
<td>W</td>
<td>DEE</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>EA</td>
<td>E</td>
<td>A</td>
<td>DEE</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>EA</td>
<td>E</td>
<td>A</td>
<td>DEE</td>
<td>C</td>
</tr>
</tbody>
</table>

EA: Ethyl acetate, E: Ethanol, A: Aqueous; DEE: Diethyl ether, C: Chloroform

Table 2: Preliminary Phytoscreening analysis of secondary metabolites

<table>
<thead>
<tr>
<th>Botanical name</th>
<th>Phlobatannins</th>
<th>Steroids</th>
<th>Terpenoids</th>
<th>Anthraquinones</th>
<th>Cardiac glycosides</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EA</td>
<td>E</td>
<td>A</td>
<td>DEE</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>EA</td>
<td>E</td>
<td>A</td>
<td>DEE</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>EA</td>
<td>E</td>
<td>A</td>
<td>DEE</td>
<td>C</td>
</tr>
</tbody>
</table>

EA: Ethyl acetate, E: Ethanol, A: Aqueous; DEE: Diethyl ether, C: Chloroform

...
medicinal properties of antibacterial, antitrypanosomal, and anti-neoplastic activities (Heyman et al., 2009; Tarus et al., 2002; Veler and Osheroff, 2004).

F. benghalensis, H. mystax, P. emblica, Z. mauritiana, and *Z. oenophila* shows the presence of cardiac glycosides. Cardiac glycosides are the secondary metabolites which help to reduce the blood pressure (Nyarko and Addy, 1990). It has organic compounds containing glycosides (sugar) that act on the contractile force of the cardiac muscle. The presence of cardiac glycosides is used as medicines for treating heart failure and certain irregular heartbeats. Cardiac glycosides are used to lower the blood pressure (Nyarko and Addy, 1990).

The results obtained in the presence study suggest that the identified phytochemical compounds perhaps bioactive constituents and these plants prove an increasingly valuable bioactive compound for significant medicinal worth.

CONCLUSION

The results obtained in this study shown the presence of medicinally important bioactive compound in the selected 15 fruits extract of plants. Many evidences were proved in advance studies which confirmed the identified phytochemicals to be bioactive compounds. Finally, it has been concluded that the presence of various phytochemical compounds in the selected edible fruit extracts has the major bioactive constituents. These bioactive compounds are having a valuable reservoir for the therapeutic merit. Therefore, the selected plant fruits extracts could be a good source for useful drugs.

ACKNOWLEDGMENT

Authors are grateful to the DST-SERB for giving financial supports under the Major Research Project for young scientists (F. No. SB/YS/LS-364/2013) and thankful to the management and administrative authorities of National College (Autonomous) for their encouragement and support.

REFERENCES

Luch A. Molecular, Clinical and Environmental Toxicology. Berlin: Springer; 2009. p. 20.

Mahato SB, Sen S. Advances in triterpenoid research, 1990-