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Abstract  

Topology is a branch of Geometry concerned with the properties 
remain unchanged when the figure is deformed. Topology is used in 
automobile engineering, computer science engineering and other 
fields. The significance of topology is given in the following pages 
which will help to develop light weight components which are used 
in manufacturing two wheeler carts etc, the result is we get better 
automobile fuel efficiency. This in turn results to energy 
conservation and global environmental preservation. In industries 
several attempts are made to produce light weight designs. In order 
to manufacture light weight component our first step is to decrease 
the weights of hub bearing. Many companies have succeeded to 
reduce the weights of various products. By applying shape 
optimization techniques, many have dramatically succeeded in 
reducing weights. 

Our main objective is to reduce the weight of a hub-bearing of a car. 
To achieve this target we make use of topological optimization 
technique as well as shape optimization technique. 
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Preliminaries 

If X and Y are topological spaces and f:X→Y is continuous 
and either open or closed, then the topology  on Y is the quotient 
topology   . 

 Let  X=  with the usual topology,  
Y=  with its usual topology and define 
f:X→Y  by f(x)=(cosx,sinx). Then f is continuous and closed , so the 
unit circle with its usual topology is a quotient space of . 

The following are central useful facts for weak topology 
If X has the weak topology induced by a collection 
 of functions  then f:X→Y  is continuous iff 

is continuous for each . 
The following is the fundamental result about quotient 

topologies. 
Let Y have the quotient topology induced by a map f of X 

onto Y .Then an arbitrary map g:Y→Z  is continuous iff  
is continuous [18].  

 
 
 
 
 
 
 
 
 
Let X be a topological space. A decomposition D of X  is a 

collection of disjoint subsets of X whose union  is X. If a 
decomposition D is endowed with the topology in which §  is 
open iff U  is open in X, then D is referred to as a 
decomposition space of X [12]. 

 
Define a map  of X onto D by letting (x), for each x , 

be the element of D containing x.  is called the natural map ( or 
decomposition map) of X onto D. 

If ~ is an equivalence relation on the topological space X, 
then the identification space X/~ is defined to be the decomposition 
space D. Whose elements are the equivalence classed for ~. 

The unit circle is a quotient space of  viewed as a 
decomposition space, the appropriate elements of the 
decomposition are the one point set {x} for which 0<x<  together 
with the set .  

Consider the square  . If we identify each 
point ( 0,x) with the point (  the resulting identification space is 
homeomorphic to the the cylinder    
    

 
 
 
 
 
 
 

 
Consider the square . Identify each point 

(0,y) with the point (  and also identify each point (x,0) with 
the point (x, . Intuitively, it is clear that the resulting 
identification space is what one obtains by first rolling the square to 
obtain a cylinder , as we did before then matching the ends of the 
cylinder to obtain torus [7,10]. 

 

 
 

 
 

 
 
 
 

Again consider , Now identify point (x,0) with 
the result is a twisted strip,Called the Moebius strip 

[10,13]. 

 
 
 
 
 
 
 
 
 
 

Given any topological space X, we can describe two 
constructions. We obtain the cone , over X by identifying all the 
points (x,1) in X x I with a single point [3]. 
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A space X is contractible iff, the identify map I:X  is 

hometopic to some constant map c(x)=  from X to a point . 
A convex subset of the Euclidean space is contractible. 
X is contractible iff for any space T, any two continuous 

maps f,g:T X are homotopic. 

Applications of topology in optimization  
 Topology is a branch of Geometry concerned with the 
properties which remain unchanged even if the figure is deformed . 
Also, topology is the study of continuous functions. In some cases 
some changes in the structure are possible by using topology 
optimization step. We use a homogenization method as a topology 
optimization technique [19,20].  

1. During the durability test it was found the weight of 
1.4 kg of hub-bearing has succeeded but 1.3 kg 
weight failed in the test. Slowly it was succeeded in 
producing 1 kg low weight hub-bearing for a car. 
This result marked the beginning of our analysis for 
optimal bearing shape. 

2. Ten years back our cell phone weights are more than 
600 grams but nowadays we have a cell phone   and 
also volume of the cell phone are very very small. 

3. Nano car is the best example and etc. 
 
Topology optimization  

 In the topology optimization step, an optimal structure to 
achieve the functions necessary for the part in question is obtained. 
In some cases, dramatic changes in the structure are possible. We 
used a homogenization method as a topology optimization 
technique. 
 
Analysis model 

The analysis model we used is illustrated in fig 2. The hub 
ring was integrated with the inner ring, mesh was plotted and the 3 
translational degrees of freedom for the bolt hole nodes on the 
flange were constrained. For the external load working on the hub 
ring, load concentration was assumed to occur on the rolling -16- fig 
3.Result of topology optimization surface and a rolling element load 
value obtained from a bearing internal force analysis program was 
utilized. As shown in fig 2, regions where the shape can be altered 
(design regions) were set larger, and regions where the shape 
cannot be changed (such as the wheel spigot joint outside diameter 
and bearing outside diameter) due to interactions with counterpart 
members were defined as unalterable regions (non - design 
regions). Furthermore, analysis was executed considering the 
forging draft, cyclic symmetry conditions of bolt holes and 
symmetrical ness relative to the straight lines connecting the bolt 
holes and the flange center. The object function and restricting 
conditions were as follows. 

Objective function: Distortion energy minimization 
Restricting conditions: 22.5%, 27.5% and 30% relative to the 
volume (or mass) of initial shape 

The analysis was performed with two hub bolt patterns - 0° 
(cross-pattern) and 45° (X-pattern) relative to the vertical direction. 
Since the stress was greater in the 0° direction, further analysis was 
limited to this direction. 

 
30% the initial volume 27.5% the initial volume 22.5% the 

initial volume 

 
Fig. 2 Topology optimization model 
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Analysis results 
 The shapes and principal stresses shown in fig 3 and 4 

were attained. As shown in fig 4, with greater weight reduction, 
stress rapidly increased. We adopted a shape that was 27.5% the 
initial volume and near the stress limit as the basis for the basic 
structure of the hub bearing [5,9]. 

 
Fig. 4  Proportion of initial volume 

 
 
 
 
 
 
 
 
 
 
 
 

Principal stress of each design 30% of the initial volume 
[17]. 

 
Fig.3 27.5% of the initial volume   22.5% of the initial 

volume 

 
 
 
 
 
 
 
 
 
      
 
 
 
 
 
 
 
Shape optimization  
Analysis model 

Using the shape obtained from the previously described 
topology analysis as a basis, the basic shape was set as in fig 5and 
shape optimization analysis was executed by varying the 
dimensions. The fully automatic analysis system summarized in fig 7 
was developed and the analysis was executed based on the 
experiment plan method. 

Objective function: Volume (mass) minimization Restricting 
conditions: Principle stress at three designated nodes  

The software of the shape optimization analysis system 
drives the nonlinear analysis solver to fig 5 Basic design of shape 
optimization calculate stress values while altering the shape 
according to the mesh data. In altering the shape, the shape base 
vectors* were set using the morphing software so that alteration of 
the mesh could be synchronized with alteration of the shape in order 
to maintain the cyclic symmetry of the bolt holes as well as the 
symmetrical ness relative to the straight lines connecting the bolt 
holes and the flange center [6]. 

The calculation was executed on a 2.8 GHz Pentium 4 
computer and took 2.5 days to complete. From this result, a 
response curved surface approximation model was developed to 
achieve an optimal solution. *Vectors that defines how each node 
shifts when the nodes used as parameters are shifted. 

 
 
 
 
 
 
      
 
 
 
 
 
 
 
 
 
 
 
Analysis results 

 (a) summarizes volumes, while (b) shows stress values. 
"L27 best solution" represents the combination that performed most 
effectively in the calculations performed according to the 
experimental method while Optimization" represents the optimal 
solution obtained by calculation in accordance with the response 
curved surface approximation. As a result of this series of calculation 
operations, many of the optimal values obtained coincided with the 
upper or lower limits (limits in terms of avoidance of interaction with 
counterpart parts).  At every evaluation point, the stress value is 
lower than the current level. From these findings, we determined 
the shape of our final design. 

 
Final design 

In the development work, we also applied the analysis 
technique described above to the outer ring. In addition to shape 
optimization, we attempted to achieve lightening in the finalized 
bearing specification through alteration of bearing internal design 
and development of new materials and grease. The newly developed 
hub bearing shape, which is illustrated in fig 9,has achieved the 
target mass of 1.0 kg and cleared the target values for strength, 
durability and rigidity. In addition, the hub ring and outer ring have 
also achieved lightening targets as illustrated in fig 10 [15]. 

 
 

Fig. 9 Shape of final design 
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Fig. 10 Amount of each component lightening [18] 

 
 

Outer ring 100g 

 
 

                                 
 
 
 
 
          

 
 
 
 
 
 

Hub ring  240 g 

 
 
Conclusion 

This report has introduced the shape optimization analysis 
executed for lightening hub bearings for reduced weight cars. With 
this technique, we have succeeded in achieving a target mass of 1.0 
kg, attaining dramatic lightening that was previously considered 
impossible. Note, however, that this newly developed hub bearing is 
not suitable for drum brake structures in which the hub bearing also 
functions as a brake seal.* For such applications, another hub 
bearing type developed through use of our shape optimization 
technique should be used (at a penalty of additional 50 g weight). 
Our analysis in this report was centered on Mechanical strength. 
However, we also need to set targets for hub bearing rigidity. 
Therefore, we will aim for multi-faceted optimization in which we 
attempt to promote further lightening while maintaining sufficient 
bearing rigidity so that we can establish hub bearing technology to 
cope with the needs of various car manufacturers [1,2]. 

*As shown in fig 9,the newly developed hub bearing has 
four pawls that radially guide the members installed to the hub ring. 
If the hub bearing is applied to a drum brake, the pawls need to be 
replaced with a circumferential rim to provide sealing function. 
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